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- ABSTRACT

SThettheory associated with the recursion operators

of classes of integrable nonlinear evolution equa-

tions in 2+1 dimensions is sumwarized. in particu-

lar the notions of syrmetries, gradients of conser-

,% ved quantities, strong and hereditary symmetries,

Hamiltonian operators are generalized to equations
in muLtidimensions. Applications to physically

relevant equations like the Kadomcsev-Petviashvili
equation are illustrated. integro-differenrial evo-

lucion equations like the Benjamin-Ono equation

are shown to be also described by this generalized

V theory.
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S1. INTRODUCTION

In recent years a great progress in the understanding of the

algebraic-geometrical structure of integrable nonlinear evolution equa-

tions in 1+1 dimensions has been achieved. A central r6le in the theory

is played by an integro-differential operator , the recursion operator.

possesses an algebraic-geometrical property, called hereditary I)or

Nijenhuis property. and then it generates commuting symmetries. Moreo-

ver: i) its adjoint €'maps gradients of conserved quantities into gra-

dients of conserved quantities; ii) I admits a symplectic-cosymplectic

factorization and then it generates constants of motion in involution

-I1 iii) t times the first Hamiltonian 0 is the second Hamiltoniano(2) z), then the associated evolution equations have a b;-Hamiltonian -

nature, a fundamental property underlying integrability

-1 The general theory of recursion operators and their con-

nection to a bi-Hamiltonian formulation in 1+1 dimensions has been

developed by Magri ) Gel'fand and Dorfman and Fokas and Fuchssteiner

An analogous theory for integrable evolution equations

r-[ in 2+1 dimensions has not been developed prior to our work. In parti-

'I cular no example of multidimensional recursion operator was known

apart from very special cases, like the 2+1 dimensional Burgers equa-

,. tion, that can be linearized through a generalized Cole-Hopf transfor-

mation )). Various and interesting efforts to obtain recursion opera-

- tors in 2+1 dimensions vere made for instance in ", ) and essentially

showed that recursion operators of a certain form do not exist. It is

interesting to notice that a similar situation was known for integro-

differential equations in 1+1 dimensions 9,like the Benjamin-Ono equation

-1qt. Hq xx + 2qq x ,  Hf(x) . dx'(x'-x)-tf(x').(.)

* In this case, in order to bypass the absence of the recursion

* Ioperator, an alternative approach, the so-called master-symmetries ap-]

proach, was introduced to generate commuting symmetries Such an

approach has been later successfully used in 2+1 10)and in 1*1 12)

dimensions, as well as for finite dimensional systems i.
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After the discovery ) of the recursion operator 0 and of the
(1) (2) 12

two Hamiltonian operators C( and 0 aisociated with the Kadomtsev-
12 12

Petviashvili (KP) equation

2 -1qtqxxx+ 6qqx+ 3aD-q, (1.2)

we have developed the theory associated with these operators %l1)and

applied it to two explicit examples: the classes of evolution equations

associated with (1.2) and with the Davey-Stewardson equation
": 1 2 2 2 q • z3

iqt+ i(q xx qyy)- q(u -q ux- CL u - u 21y q - x (1.3)

In particularin Ref.14, i) we present a systematic derivation

of the recursion operator $ from the underlying spectral problem,
12

ii) we show that $ generates ( what we call ) extended symmetries
() 12 (M)

a and its adjoint generates extended gradients y of conserved
12 (W) 120 quantities, iii) we show that a (ql,q2 )" 0 are Backlund Transforma-
tions (BT) and a j a / and y W Y1 are, respectively,

I° Iz , Iz Y2" Yl- 11 2 Yz" , I

commuting symmetries and gradiencs of conserved quantities in involution

.for the associated class of equations. In order to deal with the "extended"

objects of this theory, i) we introduce a novel (operator) directional

derivative, ii) we deal with a Lie algebra of operators, as opposed to

a Lie algebra of functions. In Ref.15, exploiting the richness of this

. operator Lie algebra, i) we generate, via D , time-dependent symme-
IZ

tries, ii) we use an isomorphism between Lie and Poisson brackets to

show that all these syaetries correspond to extended gradients, and

hence give rise to conserved quantities, iii) we show that the already

known master-symmetries are connected to these symmetries, and, since

t y correspond to gradients, they cannot be used to generate ;
12

iv) we find a non-gradient master-symmetry that can be used to generate

2 , v) we finally motivate and verify some of the aspects of this
generalized theory by establishing that equations in 2+1 dimensions are

exact reductions of certain nonlocal evolution equations, whose algebraic

Properties are rather straightforward.

In this note we essentially present a summary of the results

z<I'Z
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contained in z , ,'s, referring to these papers for proofs and details.

We ddictionally exhibit the recursion operator of the Benjamin-Ono (BO)

class, showing that integro-differential equations in .L1 dimensions fit

into this generalized theory 16)

2. ALGEBRAIC PROPERTIES IN 2+1 DIMENSIONS

We consider evolution equations of the form

qt. K(q).

where q is an element of some space S of functions on the plane vanishing

rapidly for lXiIY1 , and K is some differentiable map on this space

( for convenience independent of x,yt ). We use the KP equation (1.2)

as an illustrative example.

2.1 Representations Of Integrable Equations In 2+1 Dimensions

Integrable equations in 2+1 dimensions belong to some hierarchy

generated by a recursion operator ); fundamental in our theory is

to write these equations in the form

q1  0, 11dy6 n go I K (n) K ()(2.1)q. n R 1 12 12 "n I R12 I' 2

where ) denotes the Dirac delta function, qi. q(x'yit),

i 1.2, K' K (ql,q 2 ) 6 S and D , are operator valued functions12
on S . Through this paper m and n are non-negative integers.

For example the recursion operator associated with the KP class is

-2 D- q12  Dq 2D * q1.,* ql2 U q1 = q2' a(DI D2), (2.2)wLere 1 U 2 1 * x 2

U
- j dx' and D.-a , i - 1.2. This operator generateswere lase x Oi

two classes of evolution equations corresponding to two different star- -

ting operators Ki' given by j
* -12 qT2, 2 Dq q 2D 1q2 (2.3)

Then the KP equatie'n is obtained from (2.1) for n U I, 8U 1/2 and I H
i ~120 12'

w nile the first two non trivial equations of the second class K' = S 12 )

I
4

128 1
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are

qt.q = q y n 1 , 81 -1/4, (2.4a)
t yy I qy

qt o(qx + 4qqy 2q D- q a 2 2 ) n-2, 3, 1/8. (2.4b)t xxy y x yyyy

The recursion operator enjoys a simple commutator re-mi

lation with h 2  h(y -y'):2 1 2 1""

Ft = - h' h' h (2.5)
e.12 h12J 12 ? 12 y'Il12J n no 9 Z.nn-Z-

which implies that 6 K(n 1 wh e -K12 12 12 12 where
. 6 /ay. Moreover the comutation relation of Vi'with h

12 12 (n) 12 12
implies that 5 K can be written in the following alternative

4/. v~12
form

(n). n (2.6)12K 12  =O bn,Z1 2  1212 (2.6)

For the two classes of equations associated with the KP equa-

-' tion we have that

4a ,0h 1 . Dhj 3 82LS'12' h 12 ~j0 12 , 12 In 1 S2

n if K1.' 12'
b 1 12 12" (2.7)"/. "- '. Z-ss(n-s. if 1Z 2

. 3. ( i
sOZS12 12*

2.2 A New Directional Derivative

In ref.s 14,15 we present a systematic approach to derive

01% recursion operators and classes of integrable 2+1 dimensional equa-

I"' tions in the form (2.1) from the underlying spectral problems. This de-
I,, rivation is based on the use of integral representations of operators

depending on q and a/; . In the KP case, for example, the basic operator

. ..... q (2.8)

appearing in the underlying spectral problem

, w 4w 0 0, (:.9)

is represented by

_o
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f ilK (q,+ aO1 )f1 2 " dY3q1 3f32, (2. Oa) 4r

, where gij- g(x,yiyjt), i,j - 1,2,3.

The above mapping between an operator and its kernel induces

a mapping between derivatives:

. where [g ]denotes the directional d-derivative of the operator
d

valued function q in the direction g12 " Using an appropriate bilinear 4

J form ( see (4 .3a) ). it is possible to obtain the d-derivative of the

adjoint q- q2- 2 of and, consequently, of the basic operators

q 2- 1
- q41

SnN Id a(2.11)2q 12 [g12 If12 -dY 3 (gl3f3 2- fl3g32). 2.1

Since t and g j are polynomials in q!2, their directional derivat'..e
12 2

-. [g and 2  1g are well defined... . 121' 12 - g12•
' The d-gerivative is a novel aspect of the theory in 2+1

" j dimensions; its connection with the usual Frichet derivative ( hereafter

indicated by the subscript f ) is given by the following projective

formula

K1 2 F, K 1 2  K [g1l] K [g2 2  (2.12)

2 d- d5 g12  2  -12 12q, 1 q2 (2.1)

where K12 is an arbitrary function in S and K12 denotes the Frichet de-

rivative of K2 with respect to qi. i.e. qi
3 ,3

'K12 [g ] 8 i--q C cg., - i,j-1,2; i~j. (.13)

Operator valued functions on S for which d-derivatives are defined

4are called admissible.

2.3 The Lie Algebra Of The Starting Symmetries

W dW' %*N.

LA _* *j% L



The starting synetries K0 are written as to

where Ko. are admissible operators. Crucial aspect of this theory is

~e'Fthat the operators K2qu acting on suitable functi h e onging to. ,9(1) O(1) 2O

ndthe Ker of the first Hamiltonian operator (i.e. such that

form a Lie algebra. Then, with respect to the +1 dimensional case cha-

:. racterized by a Lie algebra of functions, equations in 2+1 dimensions

. present a richer algebraic structure, characterized by a Lie algebra

e of operators.

For the equations associated with the KP equation, H12 is

an arbitrary function independent of x. i.e.

H 122 H(yly2 (2.14

and the Lie algebra of the starting operators 51, and y is given by

[K s (L , . - - .1H.)
12 12 12 212 d " -N12K 12  12j12' 12 12 d [K12 12

( 3)( (3 1

H 1. H ' -I S ) 2 2 ( 2.1)

12 12 -12 12 ' d 2 tH 1 2  (2.15)

in te s of the Lie brackets end d' LefiCnec T m

d i o

((3) (1) (2) 1 ) 2 _ (2

, defSidefnedbb

H () H(I (2 • dy3 ) ( 2) H1() (2.16b)

12 L 12 q2 L2  3 13 "32 13 3 23.1)

',3.1 The Notion Of Extended Symetries. Connection To Symmetries

" And Bicklund Transformations

The recursion operator b generates a sequence of functions

OCm ) W. (m) (ql~q2), S defined by s

..These functions live in the extended space S and, in order to give

them a characterization and establish their connection to the integra-

ble evolution equation

q- IdyS K1 2 - Kil, (3.2)

-wA

.p%
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w' " iithe following definition is introduced.

i Definition 3.1

The function a 1 e S is called extended symmetry of equation (3.2) iff

. 1

a :K. )2f I (- 12. (3. 3)

. £. "Remark 3.1L

_i) Definition (3.3) makes sense only if ( 6 K I') d exists; for equations

q y, 5 K (n) K(n generated byD 6 K ) is well defined
R 2 12 1 12 1 z K12)d

and reads

- -_(n) n -n -- 4
( K.) (D .- ) b (P 1z )6L (3.4)

12 12 d(1 1 2 1 2 ":2 1)d-tr nA7 1 2 z 12 d'

wi there equation (26) is clearly used to rite 6K ( n admissible form.

If, fr example, K2 R11 and n-0 and 1, we have

12 124

F( 0 )
Ut( z 12 )d 1D (3.5a)

K ( KI ) )d  2(DO3+6D (q +q2) -3 a (D - l q 1 q )) 6 a (ql-q2)'(D D.)*

2. -12,l Y

6 Re r(Dk D3 (3.5b)

ii) The projective property (212) as e li t a K 2 is fo etns

= fy, _K Kn)geerte b . 1l2e tl d s wel efnded s

j n metry of (3.2) iff r1z commutes with 6 2K12' namely iff

S1 012 6zd 11212 2i dnO2 (3.4)

here eqIn (2.6)ov deii on learly ume t ht a 1 does ino admissil om

.depend on t, otherwise CY [K' should be replaced by ac lat + 0 [K.1 2 f 22 1f

,jThe usefulness of extended symmetries follows from the fact;

' |that they give rise to symmetries and Baklund transformations. Precisely
we have the following

O) Theorem 3.1

... ii ThIf c is an extended sym ptry of equation (3.2), then

" ti 12

S r 0 (. is a symmetry of equation (3.2), namely

Ii12 IZ 12L

12 6 K Ko (.6

11f f12dii) the equation

."-...| O - O(qltq)- 0 (3.7 b)
1. 2 2

- is a nacdlund transformation for (3.2) where, of course, q and q2 are

wehv'h olwn
iThoe 3.



are now viewed as two different solutions of (3.2).

f 3.2 Strong And Hereditary Symmecries

The introduction of the d-derivative allows a natural genera-

lization of the notions of strong and hereditary symmetries in 2+1 di-

mensions; precisely we have the following

Definition 3.2

i) The admissible operator valued function t is a strong symmetry
12

for A12 iff

+d^LA A 0 *: td1 . (3.8)-w0.

ii) The admissible operator valued function 1 is called hereditary

symmetry iff

".d 2  g12 - 12 -f2 ] 12 is symetric w.r.t.fl2 ,g 2 .(3.9)

Remark 3.2

Ei) quation (3.8) makes sense if the d-derivative of A 2exists;if A 12is

generated by an admissible operator A 2 on H12 ( A12' A12 H12).

then A is admissible and A r 2 H Since a
12 12- 12 ~-12*

linear combination of admissible functions is admissible. the

equation (2.6) implies that 5 K () is an admissible function.
12 12

1.2If A12' 1 then equation (3.8) reads

e g ]c , Kl2)d K K 0, (3.10)

p. and we say that 2 is a strong symetry of the evolution equa-

- tion (3.2). In this case t maps extended symmetries of (3.2)
12

to extended symmetries of (3.2).

.4. As for equations in ll, hereditary operators generate infini-

tely many commuting symmetries; we have precisely the following

Theorem 3.2

If the hereditary operator 0 is a strong symnetry of the
starting symmetry I0 H1 2 , and if the starting operator R 2 satisfies

the following condition

S.,g

| 4 b 4
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Ho (H) . (2] d 0 for [, L) (2)(311)i.- | [ K~12 12 ' 12 12 1 "h 2_ ' 12 - 1 " ,( .

i then (m) "-m 2
then a ;. I are extended symmetries of every evolution equation

(2.1).

Corollary 3.1

If V generates two classes of evolution equations correspon-

ding to two starting operators Kl2 , given by S, and A12' and if

and R 12 satisfy a Lie algebra of the type (2.15,16), then 0 1an 2 1 2 '12"

I and R I are extended symmetries of both classes of evolution

equations (2.1).

%. It turns out that the recursion operator (2.2) is hereditary

e- and is a strong symmetry of the starting symmetries (2.3), then it fol-
lows that (m) m for are extended

t2 12 2212 anorr Z 2 areextendedsymmetries of each equation of the KP classes, and Theorem 3.1 implies

'. that o (m ) () ()that a are symmetries and a ( 0 (qi,qn))- 0 are BT of each
1.1 12 q,)-

member of the two hierarchies.

3.3 Isospectral Problems Yield Hereditary Symmetries

The previous section illustrates the importance of here-

ditary symmetries. For equations in ll and in 2+1 dimensions isospe--

ctral problems yield hereditary operators:

•lProposition 3.1

Ii Let

U dV• d- ( )V (3.12)

A4 be an isospectral two dimensional problem, where is an operator de-

pending on q(xoy) and a /a y,and X is an eigenvalue. Assume that (G A )12'

the extended gradient of X ( see (4.2)),satisfies

Te if 2(G ) w( ( X)(G ) (3.13)

Then if 0 Y has a complete set of eigenfunctions, it is heredi-
. 12

'I tary.

For example the isospectral problem



." 11

v X*qv -AV (3. 14)) X

* associated with the KP classes implies that

.... ( A)12* vIv2' (3.15)

where v is a solution of v4. * (q - aa/ )v.*- Xv. Since defined
xX y

by (2.2). satisfies

V 4vVIvv .  (3.16)

it follows that @ is hereditary.

4. HAMILTONIAN FORMALISM

4.1 Bilinear Forms, Gradients Of Conserved Quantities

Integrable evolution equations in 2*l dimensions posses

infinitely many constants of motion of the form

R' 12 1 -
where o - o(ql.q 2 ) (the trace operation is obviously omitted if q

is a scalar).

As in 1-1 dimensions, it is more convenient to deal with the

gradients of conserved quantities; in this case the double represen-

tation (4.1) of a functional I allows the introduction of the extended

gradient grad I and of the gradient grad I of I, defined by
12

1  
-1. 7 . tr ; 3dxdydy25 .[g,1. < grad1 2 l. gl,> (4 .2a)

dL 121 R -

. 9fgll ]= tr f2dxdy 0  f gill 6 ( grad [. gl1 )
"  (4.2b)

where

< g 2  
> T tr fdxdyd (4.3a)

f f)
.gil fK tr f2dxdylgllfll ,  (4.3b)

are the proper symnetric bi'linear forms coupling arbitrary elements

g1 2 t S' f12 S S and g 11 E S, f11  
- S respectively ( S and S are

6. obviously the duals of S and S ).

If L * and L denote the adjoints of the operator valued
12

functions L 2 and L on S and S with respect to the bilinear forms (4 .3a)

and (4.3b) respectively, namely if

.". . , p'"'*1. v%%- .% o
0 4 0l rI o

"a%?



12

I| < CL g,, f2 >  " g12' Ll2f2 ' (4.4a)

( L g II gl Lf (4. 4b)

-p I I 1 "

then one can prove the following

Proposition 4.1

I i) v and . are extended gradient and gradient functions respe-
ctively, iff y -y and y + y

12d, 12 d l1f 11 f
I is an extended gradient, then y is a gradient corres-

1.2 11
ponding to the same potential, namely if y - grad 21, then

12

y - grad I.

If a functional I is conserved with respect to the evolution equa-

tion (3.2), this corresponds to the mathematical notion of conserved

covariant.

,1 Definition 4.I

The function y is an extended conserved covariant of (3.2) iff

Y KO 5 I 0. (4.5)

Then we have the following

1 Proposition 4.2

"." i) If y 1 is an extended conserved covariant of (3.2 ),y is a con-

served covariant of (3.2), namely

Y ' K1 j K 1 Ly - 0. (4.6)
Ilf 11.1 Lf1

" ii) If the functiona I s a conserved quantity of (3.2), then

y 12 - grad121 is an extended conserved covariant of (3.2).

Conversely, if y is an extended conserved covariant of (3.2)
12

and it is the extended gradient of a functional I, thenI is

a constant of motion for (3.2).

As an illustration of the notions presented in this section,

we have that the functionals I. defined by
j

I dxdy dy 5 Y j -01, (4.7)
I 2(2j 3) 3 d 2 y2 12

where

(:) .- I (" D and q (4-8)

12 jF12. 12 K12 12 912

*" .r,

% N

OLS
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are constants of motion of the KP hierarchies, corresponding tc the

extended gradients of conserved quantities

'- ~)grad 1 2 I 3  1JK2 (49(" - -
I , j-o,l (

Y gra I D D (P 1 Dq 1 .(.0

12 12

,. .. 2 1- 2
1 10 D 2 DIq +  q + q4. 0

4.2 Bi-Hamiltonian Structures

. The existence of a recursion operator for 2+1 dimensional

systems allows a characterization of their bi-Hamiltonian nature. The

"extended nature" of the operators we are dealing with, leads to a defini-

tion of Hamiltonian system in an "extended sense".

0 Definition 4.2

An equation (3.2) is of a Hamiltonian form ( or is a Hamiltonian

system ) if it can be written as

q0d. y , (4.11)
IR

where * is an extended gradient function of the form y - - 1
1 2 12 12

and 9 is a Hamiltonian operator, i.e.

i) 0 -0 (4. 12a)

-ii) satisfies the Jacobi identity w.r.t. the bracket

%.(a lb2'c12} " < a12, 0 d[0bl2J C 1 2 > b (4.12b)
The associated Poisson bracket of two functionals I(1) and 1(2)is given

* by

I( ) ,  (2) < grad 12I
1 ), 0 gradl1(2)> (4.13)

"0) D and 0 (2)-  1 D, where @ is defined in (2.2), are exam-
12 Ii 1.2

ples of Hamiltonian operators. Then, since Y(0 D I and
*(1). - 12 12

. Y D P 1 are extended gradients, the KP equation has a dou-
1.2 i12 1

ble Hamiltonian structure ( is a bi-Hamiltonian system ):
- It) (I)'' q, •  d d2 (2)(0) (4,.14.)

NfdY 26 0 lJy' fdY 23 4.4
t IR 11 122 1

o'N.

'p

'.v . . . . . . .. . .. , % ") ' 3, 'P ' %
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As in L - dimensions, the existence of a compatible pair of

Hamiltonian operators plays a fundamental rle in the theory, emphasized

* by the following Theorem

Theorem 4.1

Let ( (2) be a Hamiltonian operator for all constant
F values of v .Assume that 1 is invertible. Define t 1 (2) (0(1))

0 ( l)lo12 12 12 12

(0 t 1l2 . Assume that the operator 0 is a strong symmetry for
12 1- 12

the starting symmetry 1Z2*H that satisfies(3.11); further assume that~12 12
RC H1 2 is an extended gradient function. Then

i) Equations (2.1) are bi-Hamiltonian systems.

ii) P is hereditary. ..

12iii) K = 2 .1 and y(m) ( M )m 0 .1 are extended s _tries
12 12121Z 12 12

and extended gradients of conserved quantities respectively of

equations (2.1).

iv) .. and y are symmetries and gradients of conserved quantities

*in involution for equations (2.1), namely

K (m) [K(n) K (n) K(m)1  (4 .15a)
Kf)1 1  L(

(mn) (n),Cm (n) (1) )I ( I ) l (n) 5< ym, 3 yI > - 0, 0 - or 0-,( 4.15b)

' J 1 2 1 2 1 2 1 2 .L 2 1 2 1 2

y (J) grad1 2 (j). (4.15c)
) (m) (2 1

V) K -K -(ql,q) - 0 are auto-BT for equations (2.1).
12(qq)IRemark 4.1L
If 4 -. (2)( Q(l))-, where 0 (i) and 0 (2) are skew-symmetric,

(1)2 1(l) 1 12 12 (l)
then 0 ( 1C the operators 0 and 0 are well

12 12 12 12 12 12

coupled ).

The hypothesis of Theorem 4.1 are satisfied by the Hamiltonian
(1) (2)I operators 0 ), 0 and by the starting operators S and R of the
12 12 12 12

KP classes; then they enjoy the propetries i)-v).

5. OTHER ASPECTS OF THE THEORY

tM
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5.1 Time Dependent Symmetries, Connection To Master-Syzuetries

In order to investigate the propaties of time independent com-

muting symmetries of the integrable evolution equations (2.1), one
Z'

-. uses only special choices of H 1 2 ( given by H1 2" 1 and 6' ) for which

the Lie algebra of the starting symmetries is abelian. More general
choices of H12 make the Lie algebra of the starting symmetries non-abe- -"

lian and give rise to time dependent extended symmetries.

A time dependent symmetry

S ") (5.1)
12 j=o 1

of equation (3.2) must satisfy the following equations

'(j) 12,- ((-2)b
Z - L" 1Z .5 K12, d' j-,...r, (5.2a)

L 1 12 0.

This implies that constructing a symmetry of order r in time is equiva-

lent to finding a function r(0) with the property that its rilst Lie -"
1 2

commutator with KK1. is zero. ConsidturLng the KP class and using the

structure of the Lie algeora (2.15,16) and equation (2.6), it is possi-

ble to showtit-dependent symmetries of order r are generated through

equations (5.2) sLarting with

-(0) (re,r) m o (r)
L 1 2H 12 (53.(r) seiedb

where i I and/or R and H i s defined by12 12 12 12(r). r i

H1.- (yl-y2) (5.4)

or, more generally, by any homogeneous polynomial of degree r in y and

y2 , For example , given by (5.1), with
Y212

(0) m o (r) (5.5a)r ~ HuS "'12"12
p n E J (m-jn- r(2s,.'t) (r- 5.5b) ,;x E ,(r~j,s) RL H Z.5.25b) "

121 12 r

1 2; S 1 ." .

, (r.j.s) ( r- Z (2s LILi b l5 s1m ,(5.5c)
n, 4+1 (- .I 2 r- j (2sz4l))!

J-

%0
.- w.*'2~ ~ ~ ~ ~ ~ ~ ~ ~ S M_________k-'_______________
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I, a'7)l a >'O P (n-0/2, nl odd b (-4c 'Z'0 (5. 5d)

to, a <0 , 
1 (n-2)/2, n even

: is a time dependent extended symmetry of order r of equation (2.1) n cor-

respondinig to K = '7 The discovery of the existence of a hereditary

operator together with the structure of the Lie algebra of the

a.~iIstarting symmetries, allows a simple and elegant characterization of

the 2-1 dimensional master-symmetries . Here we briefly remark that

(m,r). (m,r)(.6T !id I1 12(56
:-~: Iare the so-called master-symmetries of degree r of KP

5.2 Gradient And Non-Gradient Mascer-Symetries

Using an isomorphism between Lie and Poisson brackets and

the Lie algebra of the starting symmetries K * it is easy to pro-

me tha o ~~r H are extended gradients. This implies thatv tht 1Z 1Z 12 12
the extended svmmetries associated with them give rise to conserved

quantities. For Qxample, the t-dependent symmetry

12

of the K? equation q, 2(q bx* qq * 3 a 2D_ qV ) corresponds to the
extended gradient D - * then it gives rise to the t-dependent

,.onserved quantity

I -dxdy I L (m1* 1 y2
R l . 2 (.,M- 3 )( 1l2 (l y2 , yl

Sinc themaser-smmeries Neerteless on-hsgran

masersymetieo_21_dmesinaleqaton exist, for example

T 5 s a on-radint aste-symetr ofthe K? classes, sati-
a. 12

sfying the following equation

n0
1,Tb - t . 59

12 1" Id n 12
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vhere b - "n and 2(2n-L), if K7,- . and .4 respectively.
(1) - .2 12u Since (0 is not a gradient function, T1 2 can beL 2

used co generae ,exactly as in l-l dimensions, through the for-

( 2 j 1 ) ~1)l (5.10) .2- d 12
The existence of the 7 2 master-svmmetry finally implies a

simple derivation of the equation

1 (n-L)
I --f~dxdy (511n ba. 2g 1 1 L

n-0I 1 (n) (a)
where I is the potential of y y grad I ) andy )

1 z 1 2

6. THE BENJAMIN-ONO CLASS

The remarkable connections C algebraic and analytical) -
between the K? and the 30 equations are also confirmed by the fact that, -

although the 30 equation is a 11L dimensional system. its recursion

operator lives in an extended space. In fact it is possible to show chat

the 30 class can be represented in tche ollowing wav"  7

SRdx q (6.1)

where 5 j (x,-x,). The hereditary operator is defined by

1z LZ

'.-'. 1z 12- l  q 2 " |

'!-., - . (6.Z)

and the operatcrH, whose action is defined on functions f 12* (XI'X2)

W of the type

12 a1 4- b,* c , c N c 2(6.3)

is given by

*.Hf * Ha,* H Hc(6.')
12 1 . 2

where H., i-1, ., is the Hilbert transform with respect co the variable "

..- L
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x. -I. - X-

H rgJ" idx!(x!-x.) -1g(x'x.). i j (6.5)

It is possible to show that all the extended symmetries c(j)
12

-I. generated by t1.

S(j) q 1 (6.6)
12 12 12

are functions of the type (6.3), then formula (6.1) is well defined.

The BO equation (1.1) corresponds to n-2 and ,8-(4i)- . One can show that

the algebraic properties of the BO class (6.1) are described by the

generalized theory st-arized in this paper.

S./

J

I

.1*

-'4 -" I

." I

.',

'1
4,;

O-- i4.. l - -- ..... .

-4
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